Sunday, October 16, 2011



I grew up in the North--first New Jersey and then I went to college in Oberlin, Ohio.  So when I recently moved down to Florida to start a new job, one of the most exciting things I found about my new location was the new fauna.  Particularly all the little lizards running around!  The most common lizards to Florida belong to the Polychrotidae family, and are generally known as Anoles.  However, "lizards" are a broad and diverse group, with many different species with very different morphologies and life styles.  Here are a few fun facts about lizards:

  • Lizards hear through the conduction of sound through small bones in their lower jaw vibrating a tympanic membrane (sometimes visible on the outer skin surface)
  • Some lizards have prehensile (grasping) tails that aid them in climbing.
  • Other lizards have more elongated tails that they can use for defense as whips.
  • Some only have two limbs, while others are limbless (not to be confused with snakes).
  • Some have webbed limbs and even specialized skin flaps that act as parachutes or gliders (I highly recommend that you go and watch that link, it's a really cool video from Animal Planet that I couldn't embed here.)
  • Some have specialized fringes on their toes that allow them to run on water!  (See video)

However, being a nerd I find one of the most intriguing things about all lizards is that--unlike us--they are ectothermic, or basically cannot internally regulate their own body temperature.  This is what is generally referred to by the term "cold-blooded," although that term is considered a bit archaic by the scientific community due to the fact that cold-blooded animals do not have cold blood.  In fact, most of the time lizards probably have blood that is warmer than the blood of "warm-blooded," or endothermic animals (i.e. mammals and birds).

In order to understand the implications of being ectothermic, we should first consider the importance of body temperature in general, regardless of how it is regulated within an organism.  At it's most reduced, life is the result of many physical and chemical interactions occurring within the cells and tissues of the body.  The chemical interactions in particular (such as the transcription of DNA into RNA, and the translation of RNA into proteins; the breakdown of proteins and fats by enzymes; and the break down of ATP into ADP for energy... the list goes on), will function most efficiently within a certain temperature range.  If that temperature is too low, for example, then all those processes happen much slower.

What is it like to not be able to physiologically regulate your own body temperature?  Well for one, it vastly limits the type of environment you can live in.  While there are a few lizards that live in higher latitudes and altitudes, most lizards live in very warm climates.  This is because in order to keep their body temperature within an ideal range (somewhere around 40° C), they have to bask in sunlight and on warm substrates to keep warm, and then get to shade or be able to bury themselves in colder dirt or sand when the surrounding environment gets too hot.  In this way, you could consider lizards as behaviorally regulating their own body heat, but they still lack the physiological mechanisms by which endothermic animals regulate their own body temperature.

As you may guess, the environment ends up playing a very large role in determining the lizard's activities throughout the course of the day.  But as with any trait, it wouldn't have lasted so many generations if there wasn't a significant benefit.  Endothermic animals, in order to maintain their high internal body temperature, must have a very high metabolism to produce enough heat.  This high metabolism needs to be powered by energy gained from food, so a significant amount of the animal's time and energy must be allocated into foraging just to maintain their metabolic rate.  Lizards and other ectotherms don't have that problem; none of their energy intake needs to be put towards generating heat, so they can spend less time foraging and thus can allocate their energy towards rapid growth, social behavior, and reproduction.

The social behavior is what personally intrigued me by the Anoles of Florida.  If you watch these little guys for more than a few minutes, you will probably see them bob their heads up and down and extend a red projection from their neck, known as a dewlap.  This general behavior is seen in male Anoles, and is thought to serve to both establish territoriality and dominance over other males, as well as to attract females.  Moreover, the specific factors such as number of body push-ups, head bobs, and the degree of extension of the dewlap can convey specific signals within the same species of Anole.  It is also thought that the color of the dewlap varies between species, and that Anoles are able to visually detect the differences in color.  Some lizards are even capable of detecting ultraviolet wavelengths, thus adding another dimension to the visual spectrum that we cannot see ourselves.  Accordingly, the dewlaps of these lizards are able to reflect UV light.

In addition to being able to communicate with each other visually on a wider spectrum of visible wavelengths than we can, lizards (and many other animals) are also able to communicate using chemical signals called pheromones.  While the jury is still out on whether or not humans use pheromones to communicate, it is pretty well known that lizards can emit and detect such chemical signals.  In lizards, there seems to be some differences in the methods by which the two sexes employ the chemical signals.  Males seem to emit pheromones to communicate with other males, whereas females use their pheromones in a more male-directed fashion.  Lizards are able to detect these chemical signals using their olfactory system (sense of smell,) their gustatory system (sense of taste) and another sensory system a little foreign to us, the vomeronasal system, which specifically detects pheromone chemicals.  In lizards, the vomeronasal ducts open to the mouth, and they use their tongues to pick up the chemicals and then flick them over the olfactory and vomeronasal ducts.  This is the underlying reason for the tongue flicking behavior that you probably associate mostly with snakes.

There is quite a bit more interesting information about lizards, particularly in the shapes of their skulls and how sound is conducted through their lower jaws.  But in the interest of not writing a whole book on the matter, I'll cut this post off here.  But now you know a little more about the crazy lives of lizards!

Reference and disclaimer
Most of the information I find for the posts I write on this blog comes from a combination of knowledge that I gained through classes and through internet sources.  I generally link to these internet sources in the text of my posts, but sometimes I also get information from books (those archaic sources.)  Most of the information from today's post came from Lizards: Windows to the evolution of diversity by Eric R. Pianka and Laurie J. Vitt (University of California press, 2003).  The rest came from my own notes or internet sources where linked.

Thanks for reading!


  1. (Did you hear that The Lizard is supposed to be in the 4th Spider Man movie? Wait, look who I‘m talking to…)

    The lizards in Florida are so much fun to watch. I like to spray the window screen at my apartment with water which attracts the lizards on a hot dry days. I usually sit outside my window and read and watch my cats stare at the lizards.

    My favorite lizard is the frilled lizard, check him out :

    This guy doesn’t afraid of anything. I love the coloring of their frill and they look pretty hilarious when they run. This video just begs to be put to some Yakety Sax.

    I think one of the most interesting things I’ve ever learned about ectothermic animals is that some have the ability to actually allow their body to freeze during winter. Such as the Wood Frog: Which can tolerate up to 65% of the water in its body freezing during its hibernation stages.

    As always, interesting blog. Thanks for writing!

  2. Have you seen any skinks yet? Both the five-lined and broad-headed skink are pretty common in the area. The five-lined (also called blue tailed) readily loses it's tail and the broad-headed skink is huge. I've seen 'em longer than a foot.

  3. I haven't seen any skinks yet, but I'm looking forward to the day I do :)

    Although there's another new animal that I had actually never seen before moving to Florida, and that's a cockroach. I know they're a problem everywhere, but I could actually use the advice of someone from the area. Two weeks ago, I saw (smushed, and threw away) one in my living room (which is on the ground floor with a big sliding door to the outside--maybe that's how it got in?) And then I saw one in my fridge just now! I have been keeping my eyes open for them, but have only seen those two. Do you think I might have an infestation or just a couple that managed to find their way in?

    Either way, I'm probably going to call the bug guys just in case. But I figured a native Floridian might be able to tell me if I've got a real problem on my hands.

  4. Having read this I believed it was rather informative. I appreciate you finding the time and effort to put this informative article together. I once again find myself spending a lot of time both reading and posting comments. But so what, it was still worth it! | | | | | | |

    affordablecrrealestate |

    aikosolutions |

    autoingrosstore |